GATE Aerospace Coaching by Team IGC
 Engineering Mathematics

LINEAR ALGEBRA
$>$ Determinant
> Inverse
$>$ Rank
$>$ Solution of system of Linear equation
> Eigen values, Eigen Vectors, Cayley-Hamittom theorem
(1). Determinants
$\|\vec{x}\|$ norm of \vec{x}
Determinants is for square matrix

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & \cdots & a_{2 n} \\
a_{31} & a_{32} & \cdots & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots \vdots & \vdots \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & \cdots & a_{n m}
\end{array}\right] \text {-----Arrangement is called Matrix. }
$$

(2). $2^{\text {nd }}$ order determinant

$$
\text { If } A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \text { then the expression }\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \text { is called } 2^{\text {nd }} \text { order determinant of } \mathrm{A}_{2 \times 2}
$$

and it is denoted by $|A|$ or $\operatorname{det}(\mathrm{A})$ the expansion of

$$
|A|=\left(a_{11} a_{22}-a_{12} a_{21}\right)
$$

(3). $3^{\text {rd }}$ order determinant

$$
\begin{aligned}
& |A|=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
\end{aligned}
$$

(4). $4^{\text {th }}$ order determinant

A division of PhIE Learning Center

$$
\begin{aligned}
& |A|=\left|\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right| \\
& =a_{11}\left|\begin{array}{lll}
a_{22} & a_{23} & a_{24} \\
a_{32} & a_{33} & a_{34} \\
a_{42} & a_{43} & a_{44}
\end{array}\right|-a_{12}\left|\begin{array}{lll}
a_{21} & a_{23} & a_{24} \\
a_{31} & a_{33} & a_{34} \\
a_{41} & a_{43} & a_{44}
\end{array}\right|+a_{13}\left|\begin{array}{lll}
a_{21} & a_{22} & a_{24} \\
a_{31} & a_{32} & a_{34} \\
a_{41} & a_{42} & a_{44}
\end{array}\right|-a_{14}\left|\begin{array}{lll}
a_{12} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
a_{41} & a_{42} & a_{43}
\end{array}\right|
\end{aligned}
$$

(5). Elementary operations
(i). $\mathrm{R}_{\mathrm{i}} \leftrightarrow \mathrm{R}_{\mathrm{j}}$
(ii). $\mathrm{R}_{\mathrm{i}} \rightarrow \mathrm{KR}_{\mathrm{i}}(\mathrm{K} \neq 0)$
(iii). $\mathrm{R}_{\mathrm{j}} \rightarrow \mathrm{R}_{\mathrm{j}}+\mathrm{KR}_{\mathrm{i}}$

Note:-
(1). Always select that Row or Column which has more No of zero to evaluate the value.
(2). Total No of terms in the expansion of a determinant of order n is n !

$$
\left\{\begin{array}{l}
2 X 2 \rightarrow 2=2! \\
3 X 3 \rightarrow 6=3! \\
4 X 4 \rightarrow 24=4!
\end{array}\right.
$$

(3). If A is ($m \times n$) and B is ($n \times p$), then how many no of multiplication and addition are involved in computing matrix product $\mathrm{A} \times \mathrm{B}$

$$
\left[A_{m \times n}\right] \times[B]_{n \times p}=[A B]_{m \times p}
$$

*Equal always for product of Matrix

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots \cdots & a_{m n}
\end{array}\right]_{\mathrm{mxn}}\left[\begin{array}{ccccc}
b_{11} & b_{12} & b_{13} & \cdots \cdots & b_{1 n} \\
b_{21} & b_{22} & b_{23} & \cdots \cdots & b_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
b_{n 1} & b_{n 2} & b_{n 3} & \cdots \cdots & b_{n p}
\end{array}\right]_{\mathrm{nxp}}} \\
& =\left(\mathrm{a}_{11} \mathrm{~b}_{11}+\mathrm{a}_{12} \mathrm{~b}_{21}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{~b}_{\mathrm{n} 2}\right)+\left(\mathrm{a}_{11} \mathrm{~b}_{12}+\mathrm{a}_{22} \mathrm{~b}_{22}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{~b}_{\mathrm{n} 2}\right)+\ldots .
\end{aligned}
$$

Note:-
($\mathrm{n}-1$) additions for 1 term

Addition:-

$$
m p(n-1)
$$

Multiplication
mpn

Properties of determinants:-

(1). $\left|A_{n \times n} B_{n \times n}\right|=\left|A_{n \times n}\right|\left|B_{n \times n}\right|$
(2). $\left|A^{K}\right|=|A|^{K}$
(3). $\left|\mathrm{A}^{\mathrm{T}}\right|=|\mathrm{A}|$ (Transpose)
(4). If two rows are same, $|A|=0$
(5). If two rows are interchanged,

$$
\begin{aligned}
&|\mathrm{A}|=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
b_{21} & b_{22} & b_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right| \\
&|\mathrm{B}|=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
c_{31} & c_{32} & c_{33} \\
b_{21} & b_{22} & b_{23}
\end{array}\right| \\
&|\mathrm{B}|=-|\mathrm{A}| \text { or }(-1)^{\mathrm{K}}|\mathrm{~A}|
\end{aligned}
$$

$\mathrm{K}=$ no of times of interchange of two rows.

$$
|\mathrm{C}|=\left|\begin{array}{lll}
c_{31} & c_{32} & c_{33} \\
b_{21} & b_{22} & b_{23} \\
a_{11} & a_{12} & a_{13}
\end{array}\right|=|\mathrm{A}|
$$

(6). $\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 k & 5 k & 6 k \\ 7 & 8 & 9\end{array}\right|=\mathrm{k}\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right|$ for determinants

For matrix,

A division of PhIE Learning Center

$$
\mathrm{k}\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]=\left[\begin{array}{ccc}
k & 2 k & 3 k \\
4 k & 5 k & 6 k \\
7 k & 8 k & 9 k
\end{array}\right] \text { for matrix }\left|\mathrm{K} \mathrm{~A}_{\mathrm{n} \times \mathrm{n}}\right|=\mathrm{K}^{\mathrm{n}}\left|\mathrm{~A}_{\mathrm{n} \times \mathrm{n}}\right|
$$

(7). $A=\left[\begin{array}{ccc}2 & 0 & 8 \\ 0 & 9 & 0 \\ 0 & 0 & 10\end{array}\right]$
$>$ Upper triangle matrix
$>$ Lower triangle matrix
$>$ Diagonal matrix
$>$ Scalar matrix $=\mathrm{k}$ (identity matrix)
$>$ Identity matrix
$>$ Dull matrix
Singular matrix $|\mathrm{A}|=0$
Idempotent matrix $\left(\mathrm{A}^{2}=\mathrm{A}\right)$
Involutory matrix $\left(\mathrm{A}^{2}=\mathrm{I}\right)$
Inverse of square matrix

$$
\mathrm{A}^{-1}=\frac{\operatorname{Adj}(A)}{|A|}
$$

$\operatorname{Adj}(\mathrm{A})=\frac{(A)^{T}}{|A|}$, here, $(\mathrm{A})^{\mathrm{T}}$ is cofactor matrix
Equality of matrices

$$
\left[\begin{array}{ll}
x-y & p+q \\
p-q & x+y
\end{array}\right]=\left[\begin{array}{cc}
2 & 5 \\
1 & 10
\end{array}\right]
$$

Then,

$$
\begin{aligned}
& x-y=2 \\
& p+q=5 \\
& p-q=1 \\
& x+y=10
\end{aligned}
$$

Addition/Subtraction of matrix

$$
\mathrm{A} \pm \mathrm{B}=\left[\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right] \pm\left[\begin{array}{ll}
4 & 6 \\
7 & 8
\end{array}\right]
$$

In addition $=\left[\begin{array}{cc}5 & 8 \\ 10 & 13\end{array}\right]$
In subtraction $=\left[\begin{array}{ll}-3 & -4 \\ -4 & -3\end{array}\right]$
Note:-
(1). Properties of matrix multiplication
(a). $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
(b). $\mathrm{AB}=0 \Rightarrow \mathrm{~A} \neq 0$ or $\mathrm{B} \neq 0\{$ not necessary $\}$
(c). $\mathrm{AB} \neq \mathrm{BA}$
(d). $\mathrm{AB}=\mathrm{AC} \Rightarrow \mathrm{B}=\mathrm{C}$ (if A is non-singular matrix)

