## GATE Aerospace Coaching by Team IGC

Aircraft Performance

## Steady Level Flight



Where,
$\alpha-$ is angle of attack
$\alpha_{\mathrm{T}}-$ is angle of inclination $\mathrm{b} / \mathrm{w}$ flight path direction and thrust vector.
$\gamma$ - is climb angle (angle between flight path and horizontal)
$\beta$ - is pitch angle (angle between chord line and horizontal)
$\beta=\alpha+\gamma$
(i.e). Pitch angle $=\mathrm{AOA}+\mathrm{Climb}$ angle

Four physical forces:-
L - Lift perpendicular to flight path direction (relative wind)
D - Drag parallel to relative wind.
T - Thrust (at an angle $\alpha_{\mathrm{T}}$ w.r.t to flight path)

IITians GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com
Exclusive GATE Coaching by IIT/ISc Graduates

A division of PhIE Learning Center

W - Weight perpendicular to horizontal.
According to Newton's second law (for curvilinear motion)

$$
\sum F_{\| e l}=m \frac{d \nu}{d t} \quad \sum F_{\perp r}=\frac{m v_{2}}{r_{c}}
$$

Where, $r_{c}$ - is radius of curvature.

Resolving forces $\|^{\text {el }}$ and $\perp^{r}$ to flight path we get,

$$
\begin{aligned}
& \sum F_{\| l e l}=T \cos \alpha_{T}-W \sin \gamma-D=m \frac{d v}{d t} \\
& \sum F_{\perp r}=L-W \cos \gamma+T \sin \alpha_{T}=\frac{m v_{2}}{r_{c}}
\end{aligned}
$$

Un-accelerated flight performance:-
For un-accelerated flight,

$$
\frac{d v}{d t}=0, \frac{v^{2}}{r_{c}}=0
$$

Then,

$$
\begin{aligned}
& T \cos \alpha_{T}-W \sin \gamma-D=0 \\
& L-W \cos \gamma+T \sin \alpha_{T}=0
\end{aligned}
$$

In case of straight steady and level flight,

$$
\begin{aligned}
& \alpha_{T}=0, \gamma=0 \\
& T-D=0 \quad ; \quad L-W=0
\end{aligned}
$$

Consider for straight and level flight

$$
\mathrm{T}=\mathrm{D} \quad ; \quad \mathrm{L}=\mathrm{W}
$$

Exclusive GATE Coaching by IIT/IISc Graduates
I). Condition of minimum drag:-

$$
\begin{aligned}
& \mathrm{L}=\mathrm{W}, \mathrm{~T}=\mathrm{D} \\
& \frac{L}{D}=1=\frac{D}{T} \\
& \mathrm{~T}=\frac{W}{\left(\frac{L}{D}\right)} \\
& \left(T_{R}\right)_{\min }=D_{\min }=\frac{1}{\left(\frac{L}{D}\right)_{\max }} W
\end{aligned}
$$

Where,

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{D}}=\mathrm{a}+\mathrm{b} \mathrm{C}_{\mathrm{L}}^{2} \\
& \mathrm{a}=\mathrm{C}_{\mathrm{D}, \mathrm{O}} \\
& b=\frac{1}{\pi \rho A R}
\end{aligned}
$$

For minimum drag, $\left(\frac{L}{D}\right)$ should be maximum

$$
T_{R}=D=C_{D} \frac{1}{2} \rho_{\infty} v_{\infty}^{2} s \quad L=W=C_{L} \frac{1}{2} \rho_{\infty} v_{\infty}{ }^{2} s
$$

$$
=\left(a+b C_{L}^{2}\right) \frac{1}{2} \rho_{\infty} v_{\infty}^{2} s
$$

$$
C_{L}=\frac{W}{\frac{1}{2} \rho_{\infty} v_{\infty}{ }^{2} s}
$$

$$
=\left(a \frac{1}{2} \rho_{\infty} s\right) v_{\infty}{ }^{2}+b\left[\frac{W^{2}}{\frac{1}{2} \rho_{\infty} s}\right] \frac{1}{v_{\infty}{ }^{2}}
$$

Exclusne gate coaching by IItIISc Graduates A division of PhIE Learning Center

$$
\begin{align*}
& T_{R}=k_{1} v_{\infty}^{2}+\frac{k_{2}}{v_{\infty}{ }^{2}}  \tag{1A}\\
& \mathrm{~T}_{\mathrm{R}}=\text { profile drag + induced drag }
\end{align*}
$$

Where,

IITians GATE CLASSES
BANGALORE
Visit us: www.iitiansgateclasses.com
Mail us: info@iitiansgateclasses.com

$$
\begin{aligned}
& k_{1}=a \frac{1}{2} \rho_{\infty} s \\
& k_{2}=\frac{b W^{2}}{\frac{1}{2} \rho_{\infty} s}
\end{aligned}
$$



Fight Speed V

Exclusne gate coaching by IITIISc Graduates
A division of PhIE Learning Center

$$
\begin{equation*}
v_{m d}=\sqrt[4]{b / a} \sqrt{\frac{2 W}{\rho s}} \tag{1B}
\end{equation*}
$$

Sub (1B) in (1A) we get

$$
\begin{equation*}
\mathrm{D}_{\min }=2 \mathrm{~W} \sqrt{a b} \tag{1C}
\end{equation*}
$$

Minimum drag is independent of attitude from equ (1)

$$
T_{R}=\frac{W}{\left(\frac{L}{D}\right)}=\frac{W}{\left(\frac{C_{L}}{C_{D}}\right)}
$$

For $\mathrm{T}_{\mathrm{R}}$ minimum drag is minimum.
(i.e) $\left(\frac{C_{L}}{C_{D}}\right)$ is maximum.(i.e) $\left(\frac{C_{D}}{C_{L}}\right)$ should be minimum.
(i.e) $\frac{d \frac{C_{D}}{C_{L}}}{d C_{L}}=0 \quad \frac{C_{D}}{C_{L}}=\frac{a+b C_{L}{ }^{2}}{C_{L}}$
$\frac{d \frac{C_{D}}{C_{L}}}{d C_{L}}=\frac{\left(a+b C_{L}^{2}\right) \cdot 1-C_{L}\left(2 b C_{L}\right)}{C_{L}{ }^{2}}=0$

$$
a-\frac{b C_{L}^{2}}{C_{L}^{2}}=0
$$

$$
\begin{aligned}
& a-b C_{L}^{2}=0 \\
& a=b C_{L}^{2} \\
& C_{L m d}=\sqrt{a / b}
\end{aligned}
$$

IITians GATE CLASSES
BANGALORE
Visit us: www.iitiansgateclasses.com
Exclusne gate coaching by ITtIISc Graduates

$$
\begin{aligned}
& C_{D m d}=2 a \\
& \left(\frac{C_{L}}{C_{D}}\right)_{m d}=\frac{1}{2 \sqrt{a b}}
\end{aligned}
$$

It is the condition for max endurance of jet engine aircraft and condition for ma range of piston engine aircraft.
(2). Minimum power required:-

$$
\begin{align*}
& p_{R}=T_{R} v_{\infty} \quad \text { fromequ (1A) } \\
& =\left[k_{1} v_{\infty}^{2}+\frac{k_{2}}{v_{\infty}{ }^{2}}\right] v_{\infty} \\
& p_{R}=k_{1} v_{\infty}^{3}+\frac{k_{2}}{v_{\infty}} \tag{2A}
\end{align*}
$$

For $p_{R}$ to be minimum,

$$
\begin{gather*}
\frac{d p_{R}}{d v_{\infty}}=0 \\
3 k_{1} v_{\infty}{ }^{2}-\frac{k_{2}}{v_{\infty}{ }^{2}}=0 \\
3 k_{1} v_{\infty}{ }^{2}=\frac{k_{2}}{v_{\infty}{ }^{2}} \\
v_{\infty}=\sqrt[4]{\frac{k_{2}}{3 k_{1}}} \\
v_{m p}=\sqrt[4]{\frac{b}{3 a}} \sqrt{\frac{2 w}{\rho_{\infty} s}} \tag{2B}
\end{gather*}
$$

Exclusve Gate coaching by IITIISc Graduates

$$
\begin{aligned}
& v_{m p}=\frac{1}{\sqrt[4]{3}} v_{m d} \\
& v_{m p}=0.7598 v_{m d} \\
& p_{R}=T_{R} v_{\infty} \\
& =\frac{w}{\left(\frac{C_{L}}{C_{D}}\right)} \sqrt{\frac{2 w}{\rho_{\infty} s C_{L}}} \\
& p_{R}=\frac{w^{3 / 2}}{\left(\frac{C_{L}}{C_{D}}\right)} \sqrt{\frac{2}{\rho_{\infty} s}} \\
& p_{R} \alpha \frac{1}{\left(\frac{C_{L}^{3 / 2}}{C_{D}}\right)}
\end{aligned}
$$

$$
\left(p_{R}\right)_{\min } \alpha \frac{1}{\left(\frac{C_{L}^{3 / 2}}{C_{D}}\right)_{\max }}
$$

For minimum power required $\left(\frac{C_{L}{ }^{3 / 2}}{C_{D}}\right)$ should be maximum (i.e) $\left(\frac{C_{D}}{C_{L}{ }^{3 / 2}}\right)$ should be minimum for $\min p_{R}$

$$
\begin{aligned}
& \frac{d\left(\frac{C_{D}}{C_{L}^{3 / 2}}\right)}{d C_{L}}=0 \quad \frac{C_{D}}{C_{L}}=\frac{a+b C_{L}^{2}}{C_{L}^{3 / 2}} \\
& \frac{\left(a+b C_{L}^{2}\right)\left(3 / 2 C_{L}^{1 / 2}\right)-C_{L}^{3 / 2}\left(2 b C_{L}\right)}{C_{L}^{3}}=0
\end{aligned}
$$

Exclusive GATE Coaching by IIT/IISc Graduates

IITians GATE CLASSES
BANGALORE
Visit us: www.iitiansgateclasses.com
Mail us: info@iitiansgateclasses.com

On simplification we get

$$
\begin{array}{lr}
3 a=b C_{L}^{2} & \text { (i.e) } C_{D o}=\frac{1}{3} C_{D i} \\
C_{L m p}=\sqrt{\frac{3 a}{b}} & C_{L m p}=\sqrt{3} C_{L m d} \\
C_{L m p}=.732 C_{L m d} \\
C_{D m p}=4 a & \\
& =2\left(C_{L m d}\right) \\
\left(\frac{L}{D}\right)_{m p}=\frac{\sqrt{3}}{2} \frac{1}{2 \sqrt{a b}}=0.866\left(\frac{L}{D}\right)_{m a}
\end{array}
$$

It is the condition for max endurance for piston engine aircraft.
(3). Minimum drag to velocity ratio
w.k.t

$$
\begin{align*}
& T_{R}=D=k_{1} v_{\infty}^{2}+\frac{k_{2}}{v_{\infty}^{2}} \\
& \frac{D}{v_{\infty}}=k_{1} v_{\infty}+\frac{k_{2}}{v_{\infty}^{3}} \tag{3A}
\end{align*}
$$

For $\min \left(\frac{D}{v_{\infty}}\right)$

$$
\frac{d\left(\frac{D}{v_{\infty}}\right)}{d v_{\infty}}=0
$$

Exclusive Gate coaching by IIT/IISc Graduates A division of PhIE Learning Center

$$
\begin{aligned}
& k_{1}-\frac{3 k_{2}}{v_{\infty}{ }^{4}}=0 \\
& v_{\infty}=\sqrt[4]{\frac{3 k_{2}}{k_{1}}} \\
& V_{m\left(\frac{D}{v_{\infty}}\right)}=\sqrt[4]{\frac{3 b}{a}} \sqrt{\frac{2 w}{\rho_{\infty} s}} \\
& V_{m\left(\frac{D}{v_{\infty}}\right)}=\sqrt[4]{3} V_{m d} \\
& V m\left(\frac{D}{v_{\infty}}\right)=1.316 V_{m d} \\
& \frac{D}{v_{\infty}}=\frac{w}{\left(\frac{C_{L}}{C_{D}}\right)} \frac{1}{v_{\infty}}
\end{aligned}
$$

$$
=\frac{1}{\left(\frac{C_{L}}{C_{D}}\right)} \frac{w}{\sqrt{\frac{2 w}{\rho_{\infty} s C_{L}}}}
$$

$$
\frac{D}{v_{\infty}}=\frac{1}{\left(\frac{C_{L}{ }^{1 / 2}}{C_{D}}\right)} \sqrt{\frac{w \rho_{\infty} s}{2}}
$$

$$
\left(\frac{D}{v_{\infty}}\right)_{\min } \alpha \frac{1}{\left(\frac{C_{L}^{1 / 2}}{C_{D}}\right)_{\max }}
$$

For $\left(\frac{D}{v}\right)_{\min }$ then $\left(\frac{C_{L}^{1 / 2}}{C_{D}}\right)$ should be maximum (i.e) $\left(\frac{C_{D}}{C_{L}^{1 / 2}}\right)$ is minimum.

Exclusive GATE Coaching by IIT/IISc Graduates
A division of PhIE Learning Center

$$
\begin{gathered}
\frac{d\left(\frac{C_{D}}{C_{L}^{1 / 2}}\right)}{d C_{L}}=0 \\
\frac{d\left(\frac{a+b C_{L}^{1 / 2}}{C_{L}^{1 / 2}}\right)}{d C_{L}}=\frac{\left(a+b C_{L}^{2}\right)\left(\frac{1}{2} C_{L}^{-1 / 2}\right)-C_{L}^{1 / 2}\left(2 b C_{L}\right)}{C_{L}}=0
\end{gathered}
$$

On simplification we get

$$
\begin{aligned}
& 2 b C_{L}^{2}=a \\
& C_{L m\left(\frac{D}{v_{\infty}}\right)}=\sqrt{\frac{a}{3 b}} \\
& C_{L m\left(\frac{D}{v_{\infty}}\right)}=\frac{1}{\sqrt{3}} C_{L_{m d}}=0.577 C_{L m d} \\
& C_{D m\left(\frac{D}{v_{\infty}}\right)}=a+b C_{L}^{2}=a+b\left(\frac{a}{3 b}\right) \\
& C_{D m\left(\frac{D}{v_{\infty}}\right)}=\frac{4 a}{3}=\frac{2}{3}(2 a) \\
& C_{D i} \\
& C D m\left(\frac{D}{v_{\infty}}\right)=0.667 C_{D m d} \\
&
\end{aligned}
$$

