
 

 

GATE Aerospace Coaching by Team IGC 

Compressible Fluid Flow Basics 

Velocity of sound in a fluid 

 

A = Cross section area of pipe 

V = Velocity of piston 

p = pressure of fluid in pipe before movement of piston 

ρ = density of fluid before the moment of the piston 

dt = small interval of time with which piston is moved 

c = Velocity of pressure wave travelling in fluid 

Mass of fluid for a length ‘L’ before compression 

 = ρ x A x L 

 = ρ x A x c x dt 



 

 

Mass of fluid after compression for length (L-x) 

 = (ρ+dρ) x A x (L-x) 

 = (ρ+dρ) x A x (cdt-vdt) 

From continuity 

Mass of fluid before compression = mass of fluid after compression 

 ρAcdt = (ρ+dρ)A(c-v)dt 

 cdρ = ρv …………………………………(1) (neglecting vdρ) 

net force on fluid element 

 (p+dp)A-p x A = mass per second x (change in velocity) 

 Dp x A = ][ ov
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multiplying (1) and (2) 
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Sonic velocity for an adiabatic process 

For adiabatic process 
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diff. above eq. 
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Here, 
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for isothermal process 
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Hence, 

 c = RT  

Important points about sonic velocity 

 (1). Sonic velocity is depends upon the change in density for a given change in pressure. 

(2). If increase with growth in temperature 

(3). Sonic velocity is higher in gases with a high value of gas constant (R) 

Mach number (M):- 

 Define as square root of the ratio of inertia force of a flowing fluid to the elastic force. 

 M = 
kA
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Here, 



 

 

 v = velocity of fluid 

 c = velocity of sound in the fluid 

 k = bulk modulus 

 c = 


k
 

 M < 1subsonic flow 

 M = 1sonic flow 

 M > 1supersonic flow 

Mach Angle:- 

 

 Propagation of disturbance wave 

 (a),(b) the disturbance wave reach a stationary observer before the source of disturbance 

could reach him in subsonic flow 
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Compressible flow 

Basic equations 

(1). Equation of state 

 pv = mRT 

where, 

 p = absolute pressure in N/m2 

 v = volume occupied by mass (m) of the gas 

 ρ = mass density in kg/m3 

 T = absolute temperature in kelvin (K) 

 R = gas constant (287 J/kg-K) 

(2). Continuity equation 

 ρAv = constant (for 1D steady flow) 

 differential form  
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(3). Momentum equation (Euler’s equation) 

  0 gdzvdv
dp


 

(4). Energy equation  



 

 

 Incompressible flow 

 Compressible flow 

Energy equation (Bernoulli’s equ) for incompressible flow 

  0 gdzvdv
dp


 

 Integrating above equ 
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dp
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Bernoulli’s Equation for adiabatic process (pv


= c) 
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Hence, 

 Substituting  
dp

 into Euler’s momentum equation 

    gdzvdv
dp
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Use, 
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Above equation can be reduced to 
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Steady flow energy equation 

   No heat exchange 

   No shaft work 

Stagnation point / stagnation properties 

 

 

(1) po,To,ρo 

vo (at stagnation point) 

using above equation with z1=z2 at point (1) and (2) 
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From adiabatic relation 
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Similarly, 
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Relation between a and ao 
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Flow of compressible fluid from a reservoir 

 

Apply Bernoulli’s equ at (1) and (2) (assuming adiabatic process) 
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Hence, 
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V2 will be maximum when p2=0 {for given p0, T0, ρ0} 
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