IITians GATE

GATE Aerospace Coaching by Team IGC

Aircraft Structures Basics

Bredth Betho Theory

Torsion of thin walled section

Assumption:-

Wapping displacement are freely permitted
$\tau_{x s}$ is presents and every other stress component is zero
$\tau_{x s}$ doesn't vary along thickness direction

Force equilibrium along Z-axis

$$
\begin{gathered}
-\tau_{1} t_{1} d z+\tau_{2} t_{2} d z=0 \\
\tau_{1} t_{1}=\tau_{2} t_{2}=q
\end{gathered}
$$

Shear flow per unit length
q in terms of torque
Diagram

$$
d T=q d s . s
$$

$$
\begin{gathered}
T=\int d T=\int q s d s=2 \int q \frac{1}{2} s d s \\
T=2 \int q d A \\
T=2 q \int d A \\
T=2 A q \\
q=\frac{T}{2 A}
\end{gathered}
$$

Angle of Twist

Shear strain energy stored in the structure

$$
=\frac{1}{2} T \theta^{\prime} \rightarrow \text { angle of twist }
$$

$$
=\int \frac{1}{2} \cdot \tau_{v} \cdot \text { volume }
$$

$$
=\int \frac{1}{2} \frac{\tau^{2}}{G}(t d s X 1)
$$

$$
\frac{1}{2} T \theta^{\prime}=\int \frac{\tau^{2}}{2 G} t d s
$$

$$
\theta^{\prime}=\int \frac{\tau^{2}}{T G} d s
$$

$$
=\int \frac{q^{2}}{t T G} d s
$$

$$
\theta^{\prime}=\int \frac{q}{2 \pi T G} d s
$$

Torsional Rigidity

IITians GATE CLASSES

$$
\begin{gathered}
G T=\frac{T}{\theta^{\prime}} \\
G T=\frac{4 A^{2}}{\int \frac{d s}{G t}} \rightarrow \text { torstonal Rigidity } \\
J=I_{P} \rightarrow \text { for circular crossection }
\end{gathered}
$$

Problems:-

(1). In a thin walled rectangular subjected to equal and opposite forces as shown in fig, the shar stress along lay is.

(a). Zero
(b). constant non-zero
(c). yasles linearly
(d). yaslesparabolitally

Sol:-

From breathbetha theory

$$
\begin{gathered}
T=2 A q \\
T=\frac{P_{1}}{2}+\frac{P_{2}}{2} \\
q=\frac{T}{2 A} \\
T=P_{2} \quad \tau_{t}=\frac{T}{2 A}
\end{gathered}
$$

(2). A thin walled tube of circles cross section with mean radius R has a central way which divide it into two symmetrical cell a torque on is acting on the section. The shear flow q in central web is

Exclusive GATE Coaching by IIT/IISc Graduates

(a). $q=\frac{M}{2 \pi r^{2}}$
(b). $q=0$
(c). $q=\frac{M}{4 \pi r^{2}}$
(d). $q=\frac{K}{\pi r^{2}}$

Sol:-

$$
\begin{gathered}
q=q_{1}-q_{2} \\
T=2 A_{1} q_{1}+2 A_{2} q_{2} \\
\theta_{1}^{\prime}=\theta_{2}^{\prime}(\text { from compatability equation }) \\
\theta_{1}^{\prime}=\int \frac{q_{1} d s}{2 A_{1} G t_{1}} \\
\theta_{2}^{\prime}=\int \frac{q_{2} d s}{2 A_{2} G t_{2}} \\
\theta_{1}^{\prime}=\theta_{2}^{\prime} \\
\int \frac{q_{1} d s}{2 A_{1} G t_{1}}=\int \frac{q_{2} d s}{2 A_{2} G t_{2}} \\
q_{1}=q_{2} \\
q=0
\end{gathered}
$$

(3). An Euler Bernoulli's Beam has rectangular cross section Beam shear in fig and subjected to non-uniform BM along its length $v_{2}=\frac{d M}{v_{2} y}$, the shear stress distribution $\tau_{x x}$ across the cross section

Exclusive Gate Coaching by ITT/IISc Graduates

IITians GATE CLASSES
BANGALORE
Visit us: www.iitiansgateclasses.com
Mail us: info@iitiansgateclasses.com

(a). $\tau_{x x}=\frac{V_{\tau}}{2 I_{y}\left(\frac{h}{2}\right)}$
(b). $\tau_{x x}=\frac{V_{\tau}\left(\frac{h}{2}\right)^{2}}{2 I_{y}}\left(1-\frac{\tau^{2}}{\frac{h}{2}}\right)$
(c). $\tau_{x x}=\frac{V_{\tau}}{2 I_{y}}\left(\frac{2}{\frac{h}{2}}\right)^{2}$
(d). $\tau_{x x}=$ $\frac{V_{2}\left(\frac{h}{2}\right)^{2}}{2 I_{y}}$
(4). Find the torsional constant for a ring of radius is

$$
\begin{aligned}
& J=\frac{4 A^{2}}{\int \frac{d s}{t}} \\
& =\frac{4(\pi r)^{2}}{\frac{2 \pi r}{t}} \\
& =\frac{4 \pi^{2} r t}{2 \pi r} \\
& J=2 \pi r^{3} t
\end{aligned}
$$

Exclusive GATE Coaching by IIT/IISc Graduates

IITians GATE CLASSES
BANGALORE
Visit us: www.iitiansgateclasses.com
Mail us: info@iitiansgateclasses.com

Unsymmetrical Bending:-

If the cross section of the beam is not symmetrical about any axis or applied load is not acting through plane of symmetry than bending will be unsymmetrical

Consider a beam obituary cross section as shown in fig,

IITians GATE CLASSES

Exclusive GATE Coaching by IIT/IISc Graduates

IITians GATE CLASSES
BANGALORE
Visit us: www.itiansgateclasses.com
Mail us: info@iitiansgateclasses.com

A division of PhIE Learning Center

External loading system

Exclusive GATE Coaching by IIT/IISc Graduates

IITians GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com
Mailus: info@itiansgateclasses.com

(a) $\theta<90^{\circ}$

(b) $\theta>90^{\circ}$

Resolution of bending moments
Sign depending on the size of θ.In both cases, for the sense of M shown

$$
\begin{aligned}
& M_{x}=M \sin \theta \\
& M_{y}=M \cos \theta
\end{aligned}
$$

Which give,
For $\theta<\frac{\pi}{2}, M_{x}$ and M_{y} positive (fig (a)) and for $\theta>\frac{\pi}{2}, M_{x}$ positive and M_{y} negative (fig (b)).

If the neutral axis made angle α with x -axis

$$
y^{\prime}=x \sin \alpha+y \cos \alpha
$$

Exclusive GATE Coaching by IIT/IISc Graduates

Strain

$$
\begin{aligned}
& \varepsilon=\frac{y \prime}{R} \\
& \varepsilon=\frac{x \sin \alpha+y \cos \alpha}{R} \\
& \sigma_{z}=E \varepsilon \\
& \sigma_{x}=\frac{E}{R}(x \sin \alpha+y \cos \alpha)
\end{aligned}
$$

Strain relations

$$
\begin{aligned}
& \int \sigma_{z} d A=0 \\
& \text { (zero about Neutral axis) }
\end{aligned}
$$

Moment resultant

$$
\begin{aligned}
M_{x} & =\int \sigma_{z} y d A \\
M_{y} & =\int \sigma_{z} x d A \\
M_{x}= & \frac{E}{R}\left[\sin \alpha \int x y d A+\cos \alpha \int y^{2} d A\right] \\
& =\frac{E}{R}\left[\sin \alpha I_{x y}+\cos \alpha I_{x x}\right]
\end{aligned}
$$

IITians GATE CLASSES
BANGALORE
Visit us: www.iitiansgateclasses.com
Mail us: info@iitiansgateclasses.com
Exclusive gate coaching by IIT/ISc Graduates
A division of PhIE Learning Center
Similarly

$$
M_{y}=\frac{E}{R}\left[\cos \alpha I_{x y}+\sin \alpha I_{y y}\right]
$$

This is matrix form

$$
\begin{aligned}
& {\left[\begin{array}{l}
M_{x} \\
M_{y}
\end{array}\right]=\frac{E}{R}\left[\begin{array}{ll}
I_{x x} & I_{x y} \\
I_{x y} & I_{y y}
\end{array}\right]\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\}} \\
& \left\{\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right\}=\frac{E}{R}\left[\begin{array}{l}
M_{x} \\
M_{y}
\end{array}\right]\left[\begin{array}{ll}
I_{x x} & I_{x y} \\
I_{x y} & I_{y y}
\end{array}\right]^{-1} \\
& \left\{\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right\}=\frac{R}{E\left(I_{x x} I_{y y}-I_{x y}{ }^{2}\right)}\left[\begin{array}{cc}
I_{y y} & -I_{x y} \\
-I_{x y} & I_{y y}
\end{array}\right]\left\{\begin{array}{l}
M_{x} \\
M_{y}
\end{array}\right\} \\
& \cos \alpha=\frac{R}{E\left(I_{x x} I_{y y}-I_{x y}{ }^{2}\right)}\left(I_{y y} M_{x}-I_{x y} M_{y}\right) \\
& \sin \alpha=\frac{R}{E\left(I_{x x} I_{y y}-I_{x y}{ }^{2}\right)}\left(-I_{x y} M_{x}+I_{x x} M\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{z}=\frac{E}{R}(x \sin \alpha+y \cos \alpha) \\
& \sigma_{z}=\frac{\left(I_{x x} M_{y}-I_{x x} M_{x}\right)}{\left(I_{x x} I_{y y}-I_{x y}{ }^{2}\right)} x+\frac{\left(I_{y y} M_{x}-I_{x y} M_{y}\right)}{\left(I_{x x} I_{y y}-I_{x y}{ }^{2}\right)} y
\end{aligned}
$$

$$
\sigma_{z}=\frac{M_{y}}{I_{y y}} x+\frac{M_{x}}{I_{x x}} y
$$

$$
\text { At } M_{y}=0
$$

$$
\sigma_{z}=\frac{M_{x} y}{I_{x x}}
$$

Exclusive Gate Coaching by ITT/IISc Graduates

IITians GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com
Mail us: info@iitiansgateclasses.com

Problems:-

1). An idealized thin walled cross-section of the beam and perspective areas of boom are as shown in a bending moment M_{y} is acting on the cross-section the ratio of magnitude of normal stress in the top boom that of bottom boom.
(a). $\frac{5}{11}$
(b). $\frac{2}{5}$
(c). 1
(d). $\frac{5}{2}$

Sol:-
Since it is symmetric

$$
\sigma_{x}=\frac{M_{x}}{I_{x x}} y+\frac{M_{y}}{I_{y y}} x
$$

Since, $M_{x}=0$ (No bending stress at x -axis)

$$
\sigma_{z}=\frac{M_{y}}{I_{y y}} x
$$

$$
\sigma_{z} \text { top }=\frac{M_{y}}{I_{y y}} x_{t o p} ; \quad \sigma_{z \text { bottom }}=\frac{M_{y}}{I_{y y}} x_{\text {bottom }}
$$

$$
\frac{\sigma_{z \text { top }}}{\sigma_{z \text { bottom }}}=\frac{\frac{M_{y}}{I_{y y}} x_{\text {top }}}{\frac{M_{y}}{I_{y y}} x_{\text {bottom }}}
$$

Exclusive GATE Coaching by ITT/ISc Graduates A division of PhIE Learning Center

$$
\begin{aligned}
& \frac{\sigma_{z} \text { top }}{\sigma_{z ~ b o t t o m ~}}=\frac{x_{\text {top }}}{x_{\text {bottom }}} \\
& x_{\text {top }}=2-\bar{x} \\
& x_{\text {bottom }}=2+\bar{x} \\
& \bar{x}=\frac{\sum A \bar{x}}{\sum A}=\frac{2 \times 2 \times 0.2+0.1 \times 2+0-0.2 \times 2}{3 \times 0.2+2 \times 0.1}=\frac{0.8+0.2-0.4}{0.6+0.2} \\
& \bar{x}=0.75=\frac{3}{4} \\
& x_{\text {top }}=2-\frac{3}{4}=\frac{16}{4} \\
& \frac{\sigma_{z \text { top }}}{\sigma_{z \text { bottom }}}=\frac{x_{\text {top }}}{x_{\text {bottom }}}=\frac{\frac{5}{4}}{\frac{11}{4}}=5 / 11
\end{aligned}
$$

IITians GATE CLASSES
BANGALORE
Visit us: www.iitiansgateclasses.com
Mail us: info@iitiansgateclasses.com

