IITIans GATE CLASSES BANGALORE

Assignment Questions (Space Technology)

Question 1: In an inertial coordinate system, the position and velocity vectors of a satellite are , respectively, $(4.1852 \mathbf{I}+6.2778 \mathbf{J}+10.463 \mathbf{K}) 10^{7} \mathrm{ft}$ and $(2.5936 \mathbf{I}+5.1872 \mathbf{J}) 10^{4} \mathrm{ft} / \mathrm{sec}$ where I, J and K are unit vectors. Determine the specific mechanical energy, \&, and the specific angular momentum, h . Also find the flight path angle, φ.

Ans: $h=6.0922 \times 10^{12} \mathrm{ft}^{2} / \mathrm{sec}$, specific angular momentum $=1.573 \mathrm{x} 109 \mathrm{ft}^{2} / \mathrm{sec}^{2}, \varphi=35.4 \mathbf{2}^{0}$
Question 2: For a given satellite, $\varepsilon=-2.0 \times 10^{8} \mathrm{ft}^{2} / \mathrm{sec}^{2}$ and $\mathrm{e}=0.2$ Determine its specific angular momentum, semi-latus rectum, and semi-major axis.

Ans: $\mathrm{a}=3.5198 \times 107 \mathrm{ft}, \mathrm{p}=3.3790 \times 107 \mathrm{ft}, \mathrm{h}=6.897 \times 10^{11} \mathrm{ft}^{2} / \mathrm{sec}$
Question 3: A radar tracking station tells us that a certain decaying weather satellite has $\mathrm{e}=0.1$ and perigee altitude $=200 \mathrm{n} . \mathrm{mi}$. Determine its altitude at apogee, specific mechanical energy, and specific angular momentum.

Ans: Altitude at apogee $=6.135 \times 10^{6} \mathrm{ft}, \varepsilon=-2.861 \times 10^{8} \mathrm{ft}^{2} / \mathrm{sec}^{2}, \mathrm{~h}=5.855 \times 10^{11} \mathrm{ft}^{2} / \mathrm{sec}$
Question 4: A space probe is to be launched on an escape trajectory from a circular parking orbit which is at an altitude of 100 nmi above the earth. Calculate the minimum escape speed required to escape from the parking orbit altitude. (Ignore the gravitational forces of the sun and other planets.)

Ans: escape speed $=\mathbf{3 6}, 157.9 \mathrm{ft} / \mathrm{sec}$
Question 5: A space object is sighted at an altitude of $1.046284 \times 10^{7} \mathrm{ft}$ above the earth traveling at $2.593625 \times 10^{4} \mathrm{ft} / \mathrm{sec}$ and a flight path angle of 0^{0} at the time of sighting. determine $\varepsilon, \mathrm{h}, \mathrm{p}, \mathrm{e}, \mathrm{r}_{\mathrm{a}}, \mathrm{r}_{\mathrm{p}}$.

> Ans: $\varepsilon=-1.12339 \times 10^{8} \mathrm{ft}^{2} / \mathrm{sec}^{2}, \mathrm{~h}=8.141 \times 10^{11} \mathrm{ft}^{2} / \mathrm{sec}, \mathrm{p}=4.7082763 \times 10^{7} \mathrm{ft}, \mathrm{e}=0.5$, $\mathrm{r}_{\mathrm{a}}=9.416553 \times 107 \mathrm{ft}, \mathrm{r}_{\mathrm{p}}=3.138851 \times 107 \mathrm{ft}$

Question 6: For a certain satellite the observed velocity and radius at $v=90^{\circ}$ is observed to be $45,000 \mathrm{ft} / \mathrm{sec}$ and $4,000 \mathrm{n} \mathrm{mi}$, respectively. Find the eccentricity of the orbit.

Ans: $\mathrm{e}=\mathbf{1 . 5 8 1}$

