IITians GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com **Mail us:** info@iitiansgateclasses.com

A division of PhIE Learning Center

STRESS - STRAIN ASSIGNMENT

1)				
The state of plane	e-stress at a point is g	given by $\sigma_i = -200 \mathrm{MPa}$	i, σ_v = 100 MPa and	$t_{xy} = 100 \text{ MPa}.$
	ear stress (in MPa) is		•	
(A) 111.8	(B) 150.I	(C) 180.3	(D) 223.6	
				[GATE ME 2010]
2)				
- *	esses in a plane stress p ress (in MPa) will be	problem are $\sigma_t = 100 \text{ MPa}$	$\sigma_{\rm c} = 40 \text{ MPa}$, the m	nagnitude of the
(A) 60	(B) 50	(C) 30	(D) 20	
				[GATE ME 2009]
3)	I III . D.	11		
•	L and diameter D is ulate the resulting char	subjected to a tensile to age in diameter?	oad P. Which of t	ne following is
(A) Young's mod (B) Shear modul (C) Poisson's rat (D) Both Young	lus	modulus		
(D) Dom Todag	s moderns and shear	modulus		[GATE ME 2008]
4)				[GATE WE 2008]
A 200 x 100 x 50 mm steel block is subjected to a hydrostatic pressure of 15 MPa. The Young's modulus and Poisson's ratio of the material are 200 GPa and 0.3 respectively. The change in the volume of the block in mm ³ is				
(A) 85	(B) 90	(C) 100	(D) 110	
				[GATE ME 2007]
*coefficient of t If the tempera	hermal expansion ture of the rod is in	cross section A has a α . One end of the recoverased by ΔT , then is E α ΔT and strain de	d is fixed and oth	er end is free.
(A) Stone developed in the rod is zero and strain developed in the rod is -a AT				

(c) Stress developed in the rod is zero and strain developed in the rod is $\alpha \Delta T$ (d) Stress developed in the rod is $E\alpha \Delta T$ and strain developed in the rod is zero

[ISRO ME 2017]

IITians GATE CLASSES **BANGALORE**

Visit us: www.iitiansgateclasses.com Mail us: info@iitiansgateclasses.com

A division of PhIE Learning Center

6)

The figure shows an Aluminium rod of 25 mm² cross sectional area. It is loaded at four points, K, L, M and N. Assume E = 67 GPa for Aluminium. The total change in length of the rod due to loading as shown is close to

All dimensions are in mm

(b)
$$-10 \,\mu \text{m}$$

(c)
$$-30 \,\mu m$$

 $10 \, \mu \mathrm{m}$ (d)

[ISRO ME 2017]

7)

Two steel rails each of 12 m length are laid with a gap of 1.5 mm at ends at a temperature of 24°C. The thermal stress produced at a temperature of 40°C is (take $E = 2 \times 10^5 \text{ N/mm}^2$. coefficient of thermal expansion = 12×10^{-6} /°C)

10.5 N/mm² (a)

12.5 N/mm² **(b)**

13.4 N/mm² (c)

15.5 N/mm² (d)

[ISRO ME 2016]

8)

A 0.75 meter aluminium bar 25 X 10⁻⁴ m² in cross-sectional area is attached to a 0.50 meter steel bar 15 X 10-4 m² in cross-sectional area, as shown in the figure. Take E (Young's modulus) value of 200 GPa for steel & 70 GPa for aluminum. Total shortening due to an axial compressive force of 175 kN is

(a)
$$\frac{157}{168}$$
 mm

(a)
$$\frac{157}{168}$$
 mm (b) $\frac{175}{168}$ mm (c) $\frac{175}{186}$ mm (d) $\frac{157}{186}$ mm

[ISRO ME 2014]