

IITians GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com Mail us: info@iitiansgateclasses.com

GATE Mechanical Engineering

ASSIGNMENT- Heat Transfer – 1

1 Mark – Question 1 to Question 10

- 1. In descending order of magnitude, the thermal conductivity of
 - (a) Pure iron,
 - (b) Liquid water,
 - (c) Saturated water vapor and
 - (d) Aluminum can be arranged as

 $(A) a b c d \qquad (B) b c a d \qquad (C) d a b c \qquad (D) d c b a$

(Gate-2001, ISRO-2003)

(ISRO-2013)

- 2. A composite wall having three layers of thickness 0.3 m, 0.2 m and 0.1 m and of thermal conductivities 0.6, 0.4 and 0.1 W/mK, respectively, is having surface area 1 m2. If the inner and outer temperatures of the composite wall are 1840 K and 340 K, respectively, what is the rate of heat transfer?
 (a) 150 W
 (b) 1500 W
 (c) 75 W
 (d) 750 W
 (IES-2007)
 - (d) 150 W (d) 1500 W (d) 150 W
- 3. In a Radiative Heat Transfer, grey surface is one
 - (a) Which has emissivity independent of temperature
 - (b) Whose emissivity is independent of wavelength
 - (c) Which has reflectivity equal to zero
 - (d) Which appears equally bright from all directions
- 4. In a condenser of a power plant, the steam condenses at a temperature of 60°C. The cooling water enters at 30°C and leaves at 45°C. The logarithmic mean temperature difference (LMTD) of the condenser is
 - (a) 16.2 °C
 - (b) 21.6 °C
 - (c) 30 °C
 - (d) 37.5 °C
- 5. For flow of fluid over a heated plate, the following fluid properties are known

Velocity of flow = 5 m/s; Temperature of plate = 100° C; Temperature of free stream = 30° C; Viscosity = 0.001Pa-s; Density = 1.2 kg/m^3 ; Specific heat at constant pressure = 1 kJ/kgK; Thermal conductivity = 1W/m– K

IITians GATE CLASSES BANGALORE

Visit us: www.iitiansgateclasses.com Mail us: info@iitiansgateclasses.com

 \mathbf{C}_1

28.98 µm

14.49 µm

1449 µm

2898 µm

A division of PhIE Learning Center

The hydrodynamic boundary layer thickness at a specified location on the plate is 1 mm. The thermal boundary layer thickness at the same location is

- (A) 0.001 mm (B) 0.01 mm (C) 1 mm (D) 1000 mm
- (C) 1 mm

(D) 1000 mm

- 6. The meaning of **m** and Value C₁ in Wien's Displacement Law, $\lambda_m \times T = C_1$, are
 - m
 - (a) Maximum Wavelength in Black Body
 - (b) Minimum Wavelength in Black Body
 - (c) Wavelength of Minimum Emission
 - (d) Wavelength of Maximum Emission
- The ratio Internal conduction resistance to the Surface convection resistance is known as

 (a) Grashoff Number
 - (b) Biot Number
 - (c) Stanton Number
 - (d) Prandtl Number
- 8. The insulated tip temperature of a rectangular longitudinal fin having an excess (over ambient) root temperature of θ_0 is:
 - (a) $\theta_{o} tanh(mL)$
 - (b) $\theta_{\rm o}/\sinh({\rm mL})$
 - (c) $\theta_0 \tanh(mL) / (mL)$
 - (d) $\theta_o / \cosh(mL)$
- 9. Extended surfaces are used to increase the rate of heat transfer. When the convective heat transfer coefficient h = mk, the addition of extended surface will:
 - (a) Increase the rate of heat transfer
 - (b) Decrease the rate of heat transfer
 - (c) Not increase the rate of heat transfer
 - (d) Increase the rate of heat transfer when the length of the fin is very large (IES-2010)
- 10. F or a heat exchanger, ΔT_{max} is the maximum temperature difference and ΔT_{min} is the minimum temperature difference between the two fluids. *LMTD* is the log mean temperature difference. C_{min} and C_{max} are the minimum and the maximum heat capacity rates. The maximum possible heat transfer (Q_{max}) between the two fluids is (A) C_{min} LMTD (B) $C_{min} \Delta T_{max}$ (C) $C_{max} \Delta T_{max}$ (D) $C_{max} \Delta T_{min}$ (Gate-2016)

2 Mark - Question 11 to Question 25