

GATE Aerospace Coaching By IITians GATE CLASSES

LINEAR ALGEBRA

- Determinant
- ➢ Inverse
- Rank
- Solution of system of Linear equation
- ▶ Eigen values, Eigen Vectors, Cayley-Hamittom theorem

(1). Determinants

 $\|\vec{x}\|$ norm of \vec{x}

Determinants is for square matrix

 $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & \cdots & a_{2n} \\ a_{31} & a_{32} & \cdots & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & \cdots & a_{nm} \end{bmatrix} - \dots - \text{Arrangement is called Matrix.}$

(2). 2nd order determinant

If
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 then the expression $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$ is called 2nd order determinant of A_{2x2}

and it is denoted by |A| or det(A) the expansion of

$$|A| = (a_{11}a_{22} - a_{12}a_{21})$$

(3). 3rd order determinant

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

GATE Aerospace Coaching By IITians GATE CLASSES

$$=a_{11}(a_{22}a_{33}-a_{23}a_{32})-a_{12}(a_{21}a_{33}-a_{23}a_{31})+a_{13}(a_{21}a_{32}-a_{22}a_{31})$$

(4). 4th order determinant

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$
$$= a_{11} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{43} & a_{44} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} & a_{24} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} - a_{14} \begin{vmatrix} a_{12} & a_{22} & a_{23} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{43} & a_{44} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} & a_{24} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} - a_{14} \begin{vmatrix} a_{12} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} + a_{13} \begin{vmatrix} a_{12} & a_{22} & a_{24} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} - a_{14} \begin{vmatrix} a_{12} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} + a_{13} \begin{vmatrix} a_{12} & a_{22} & a_{24} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} + a_{13} \begin{vmatrix} a_{12} & a_{22} & a_{24} \\ a_{13} & a_{22} & a_{24} \\ a_{14} & a_{14} & a_{14} & a_{14} \\ a_{14} & a_{14} & a_{14} & a_{14} \end{vmatrix}$$

(5). Elementary operations

(i). $R_i \leftrightarrow R_j$

(ii). $R_i \rightarrow KR_i (K \neq 0)$

(iii).
$$R_j \rightarrow R_j + KR_j$$

Note:-

(1). Always select that Row or Column which has more No of zero to evaluate the value.

(2). Total No of terms in the expansion of a determinant of order n is n!

$$\begin{cases} 2X2 \rightarrow 2 = 2!\\ 3X3 \rightarrow 6 = 3!\\ 4X4 \rightarrow 24 = 4! \end{cases}$$

(3). If A is $(m \ x \ n)$ and B is $(n \ x \ p)$, then how many no of multiplication and addition are involved in computing matrix product A x B

GATE Aerospace Coaching By IITians GATE CLASSES

 $[A_{m x n}] x [B]_{n x p} = [AB]_{m x p}$

*Equal always for product of Matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}_{m \times n} \begin{bmatrix} b_{11} & b_{12} & b_{13} & \cdots & b_{1n} \\ b_{21} & b_{22} & b_{23} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & b_{n3} & \cdots & b_{np} \end{bmatrix}_{n \times p}$$

 $=(a_{11}b_{11}+a_{12}b_{21}+\ldots+a_{1n}b_{n2})+(a_{11}b_{12}+a_{22}b_{22}+\ldots+a_{1n}b_{n2})+\ldots$

Note:-

(n-1) additions for 1term

N multiplication for 1 term

Addition:-

mp(n-1)

Multiplication

mpn

Properties of determinants:-

- (1). $|A_{n x n} B_{n x n}| = |A_{n x n}| |B_{n x n}|$
- (2). $|A^{K}| = |A|^{K}$
- (3). $|A^{T}| = |A|$ (Transpose)
- (4). If two rows are same, |A| = 0

(5). If two rows are interchanged,

Str

A division of PhIE Learning Center

GATE Aerospace Coaching By IITians GATE CLASSES

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ b_{21} & b_{22} & b_{23} \\ c_{31} & c_{32} & c_{33} \end{vmatrix}$$
$$|\mathbf{B}| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ c_{31} & c_{32} & c_{33} \\ b_{21} & b_{22} & b_{23} \end{vmatrix}$$

$$|\mathbf{B}| = -|\mathbf{A}| \text{ or } (-1)^{\mathbf{K}}|\mathbf{A}|$$

K= no of times of interchange of two rows.

$$|\mathbf{C}| = \begin{vmatrix} c_{31} & c_{32} & c_{33} \\ b_{21} & b_{22} & b_{23} \\ a_{11} & a_{12} & a_{13} \end{vmatrix} = |\mathbf{A}|$$
(6). $\begin{vmatrix} 1 & 2 & 3 \\ 4k & 5k & 6k \\ 7 & 8 & 9 \end{vmatrix} = \mathbf{k} \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$ for determinants
For matrix,

$$\mathbf{k} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} k & 2k & 3k \\ 4k & 5k & 6k \\ 7k & 8k & 9k \end{bmatrix}$$
 for matrix $|\mathbf{K} \mathbf{A}_{n \times n}| = \mathbf{K}^{n} |\mathbf{A}_{n \times n}|$
(7). $\mathbf{A} = \begin{bmatrix} 2 & 0 & 8 \\ 0 & 9 & 0 \\ 0 & 0 & 10 \end{bmatrix}$

- ➢ Upper triangle matrix
- ➢ Lower triangle matrix

GATE Aerospace Coaching By IITians GATE CLASSES

- Diagonal matrix
- Scalar matrix = k (identity matrix)
- ➢ Identity matrix
- Dull matrix

Singular matrix |A| = 0

Idempotent matrix $(A^2 = A)$

Involutory matrix $(A^2 = I)$

Inverse of square matrix

$$\mathbf{A}^{-1} = \frac{Adj(A)}{\mid A \mid}$$

Adj (A) =
$$\frac{(A)^{T}}{|A|}$$
, here, (A)^T is cofactor matrix

Equality of matrices

$$\begin{bmatrix} x-y & p+q \\ p-q & x+y \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ 1 & 10 \end{bmatrix}$$

Then,

$$x-y = 2$$

$$p+q = 5$$

$$p-q = 1$$

$$x+y = 10$$

Addition/Subtraction of matrix

GATE Aerospace Coaching By IITians GATE CLASSES

$$A \pm B = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \pm \begin{bmatrix} 4 & 6 \\ 7 & 8 \end{bmatrix}$$

In addition =
$$\begin{bmatrix} 5 & 6 \\ 10 & 13 \end{bmatrix}$$

In subtraction =
$$\begin{bmatrix} -3 & -4 \\ -4 & -3 \end{bmatrix}$$

Note:-

- (1). Properties of matrix multiplication
 - (a). (AB)C = A(BC)
 - (b). $AB = 0 \implies A \neq 0$ or $B \neq 0$ { not necessary}
 - (c). $AB \neq BA$
 - (d). $AB = AC \implies B = C$ (if A is non-singular matrix)

