# **IITians GATE CLASSES**BANGALORE

Visit us: www.iitiansgateclasses.com

Mail us: info@iitiansgateclasses.com

A division of PhIE Learning Center

## THE PN JUNCTION (EDC) ASSIGNMENT-02

### Q 01

At the junction of a PN diode

- (A) The space charge region exists predominantly in the heavily doped side of the junction
- (B) The depletion region has an electrostatic potential which makes p side positive with respect to the n side
- (C) Holes are prevented from diffusing from n side to the p side
- (D) The electric field at the junction is of such value to cause the diffusive tendency to be counterbalanced by the drift tendency of electrons and holes

Ans: D

#### Q 02

In a uniformly doped GaAs junction at T = 300 K, at zero bias only 20% of the total space charge region is to be in the p-region. The built in potential concentration in n-region is

- (A)  $1 \times 10^{16} \ cm^{-3}$
- (B)  $4 \times 10^{16} \ cm^{-3}$
- (C)  $1 \times 10^{22} \ cm^{-3}$
- (D) $4 \times 10^{22} cm^{-3}$

Ans: A

## Q\_03

A silicon pn junction at T = 300 K with zero applied bias has doping concentration of  $N_d = 5 \times 10^{16} \ cm^{-3}$  and  $N_a = 5 \times 10^{15} \ cm^{-3}$ . The width of depletion region extending into the nregion is

- $(A)4.11 \times 10^{-6}$  cm
- (B)  $3.22 \times 10^{-6}$  cm
- $(C) 4.11 \times 10^{-5} \text{ cm}$
- $(D)3.22 \times 10^{-5} \text{ cm}$

Ans: A

# **IITians GATE CLASSES**BANGALORE

**Visit us:** www.iitiansgateclasses.com **Mail us:** info@iitiansgateclasses.com

## A division of PhIE Learning Center

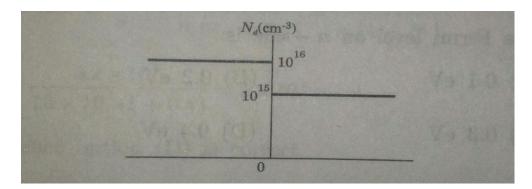
### Q 04

When reverse bias is applied to a PN junction

- (A) Majority carriers flow down the potential
- (B) The barrier potential is decreased
- (C) Thermally generated minority carriers are responsible for the saturation current
- (D) Minority carriers are holes from p-side moving to the n-side

#### Ans: C

### Q 05


For the above question, in depletion region maximum electric field  $|E_{max}|$  is

- (A)  $1.1 \times 10^4 \text{ V/cm}$
- (B)  $2.2 \times 10^4$  V/cm
- (C)  $3.2 \times 10^4 \text{ V/cm}$
- (D)  $4.1 \times 10^4 \text{ V/cm}$

### Ans: C

#### Q 06

An n - n isotype doping profile is shown below. The built in potential barrier is ( $n_i = 1.5 \times 10^{10} \ cm^{-3}$ )



- (A) 0.66 V
- (B) 0.06 V
- (C) 0.03 V
- (D) 0.33 V

Ans: B



# **IITians GATE CLASSES**BANGALORE

**Visit us:** www.iitiansgateclasses.com **Mail us:** info@iitiansgateclasses.com

## A division of PhIE Learning Center

#### Q 07

The diffusion capacitance of PN junction

- (A) Decreases with increasing current and increasing temperature
- (B) Decreasing with increasing current and increasing temperature
- (C) Increasing with increasing current and increasing temperature
- (D) Does not depend on current and temperature.

Ans: C

#### Q 08

A silicon abrupt junction has dopant concentration of  $N_d = 2 \times 10^{16} \ cm^{-3}$  and  $N_a = 2 \times 10^{15} \ cm^{-3}$ . The applied reverse bias voltage is  $V_R = 8$  V. The maximum electric field  $|E_{max}|$  in depletion region is

- (A)  $5.5 \times 10^4$  V/cm
- (B)  $6.9 \times 10^4$  V/cm
- (C)  $3.5 \times 10^4$  V/cm
- (D)  $5 \times 10^4 \text{ V/cm}$

Ans: B

#### Q 09

In a uniformly doped silicon pn junction has  $N_d = 10^{17} \ cm^{-3}$  and  $N_a = 5 \times 10^{17} \ cm^{-3}$ . The junction has a cross-sectional area of  $10^{-4} \ cm^2$  and has an applied reverse bias voltage of  $V_R = 5$  V. The total junction capacitance is

- (A) 10 pF
- (B) 5.5 pF
- (C)7 pF
- (D)3.5 pF

Ans: D

#### Q 10

The switching speed of a PN junction (having a heavily doped p-region) depends primarily on

- (A) The mobility of minority carriers in the P+ region
- (B) The life time of minority carriers in the P+ region
- (C) The mobility of minority carriers in the N region
- (D) The life time of minority carriers in the N region

Ans: D